# MODEL QUESTION PAPER (2024-2025) SEMESTER I

SUBJECT: MATHEMATICS

Time: 3 hrs GRADE 9 Max. Marks: 80

#### **INSTRUCTIONS:**

- i) This question paper consists of **55** questions. All questions are compulsory.
- ii) This question paper is divided into four Sections.-A, B, C and D.
- iii) In **Section A**, Question Nos. **1 to 40** are multiple choice questions **(MCQs)** carrying **1 mark** each which are to be answered on an **OMR** sheet. The **OMR** sheet shall be collected after **90 mins**.
- iv) In **Section B**, Question Nos. **41 to 47** are short answer type I **(SA-I)** questions carrying **2 marks** each.
- v) In **Section C**, Question Nos. **48 to 53** are short answer type II **(SA-II)** questions carrying **3 marks** each.
- vi) In **Section D**, Question Nos. **54 and 55** are long answer **(LA)** questions carrying **4 marks** each.
- vii) There is no overall choice. However, an internal choice has been provided in **three** questions of **2 marks** each in **Section B** and two questions of **3 marks** each in **Section C**.
- viii) In questions on constructions, the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.
  - ix) Graph page will be provided on request.
  - x) Use of calculator is not permitted.

### Section A (1 mark each)

Choose the correct alternative from those given below each statement:

- 1. The number  $\frac{a}{b}$  , where 'a' and 'b' are integers , is not a rational number if 'b' is :
  - A. -1
  - B. 0
  - C. 1
  - D. 10

- 2. Which of the following is an irrational number?:
  - A.  $\sqrt{5} + \sqrt{5}$
  - B.  $\sqrt{5} \sqrt{5}$
  - C.  $\sqrt{5}x\sqrt{5}$
  - D.  $\sqrt{5} \div \sqrt{5}$
- 3. The rational number which has a terminating decimal expansion is :
  - A.  $\frac{3}{11}$
  - B.  $\frac{20}{7}$
  - c.  $\frac{9}{8}$
  - D.  $\frac{13}{3}$
- 4. The degree of a non-zero constant polynomial is :
  - A. 0
  - B. 1
  - C. 2
  - D. 3
- 5. The zero of the polynomial  $\frac{5}{3}x$  is :
  - A.  $\frac{-5}{3}$
  - B.  $\frac{-3}{5}$
  - C. 0
  - D.  $\frac{3}{5}$

| 6. The | e equation of the x-axis is given by |
|--------|--------------------------------------|
| A.     | x = 0                                |
| В.     | y = 0                                |



D. 
$$y = 1$$

7. A graph of a linear equation in two variables is a:

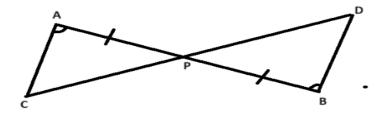
- A. circle
- B. semicircle
- C. curve
- D. straight line

8. If (3, -2) lies on the graph of 5x+ky=11, then the value of 'k' is:

- A. -7
- B. -2
- C. 2
- D. 7

9. The relation between  $sin\theta$ ,  $cos\theta$  and tan  $\theta$  is:

- A. Sin  $\theta$  +cos  $\theta$ =tan  $\theta$
- B. Sin  $\theta$  -cos  $\theta$ =tan  $\theta$
- C. Sin  $\theta \times \cos \theta = \tan \theta$
- D.  $\sin \theta \div \cos \theta = \tan \theta$


| 10. | The value of tan <sup>2</sup> 30 <sup>0</sup> is :                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| A.  | $\frac{1}{\sqrt{3}}$                                                                                                            |
| В.  | $\frac{1}{3}$                                                                                                                   |
| C.  | $\sqrt{3}$                                                                                                                      |
| D.  | 3                                                                                                                               |
| 11. | In $\triangle$ ABC, if $\angle$ A = 4x°, $\angle$ B = 24° and $\angle$ C = 36°, then the value of 'x' is :                      |
| A.  | 30                                                                                                                              |
| В.  | 60                                                                                                                              |
| C.  | 75                                                                                                                              |
| D.  | 120                                                                                                                             |
| 12  | . The complement of an angle of measure (58 + a)° is :                                                                          |
| A.  | (32 +a)°                                                                                                                        |
| В.  | (122 – a)°                                                                                                                      |
| C.  | (32 -a)°                                                                                                                        |
| D.  | (122 +a)°                                                                                                                       |
|     | s. If $\angle$ RTM is an exterior angle of $\triangle$ RST, $\angle$ R = 70° and $\angle$ S = 25°, then the measure of RTM is : |
| A.  | 45°                                                                                                                             |
| В.  | 85°                                                                                                                             |
| C.  | 95°                                                                                                                             |
| D.  | 110°                                                                                                                            |

14. In the figure, if P is the mid-point of AB and  $\angle$ CAP =  $\angle$ DBP, then the congruence rule by which  $\triangle$ APC  $\cong$   $\triangle$ BPD is :





C. AAS



D. RHS

15. If the largest side of a triangle is 12 cm, then the other two sides can be:

16. If both diagonals of a parallelogram are equal, then it is a:

#### A. Trapezium

B. Kite

#### C. Rectangle

D. Rhombus

17. The value of the polynomial  $p(y) = 2y^3 + y^2 - 5$  at y = -1 is:

- A. -8
- B. -6
- C. -4
- D. -2

18. A solution of the equation 2x - y = 5 is:
A. ( 2, 1)

B. (4,-3)

C. (1,-3)

D. (3,2)

19. The equation of a line parallel to the X-axis and 4 units above the origin is:

A. x = -4

B. y = -4

C. x = 4

D. y = 4

20. The value of  $\sin 26^{\circ} - \cos 64^{\circ}$  is:

A. 0

B. 1

C. 38

D. 90

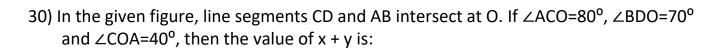
21) The zero of the polynomial 3x + 7 is:

A.  $\frac{-7}{3}$ 

B.  $\frac{-3}{7}$ 

C.  $\frac{3}{7}$ 

D.  $\frac{7}{3}$ 

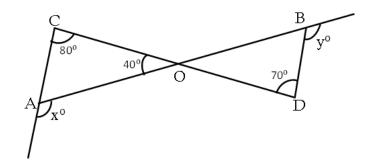

- 22) The simplified form of  $\left[\frac{-1}{27}\right]^{\frac{-2}{3}}$  is:
- A. -9
- B.  $\frac{-1}{9}$
- C.  $\frac{1}{9}$
- D. 9
- 23) If  $x^{51}$ +51 is divided by x+1, then the remainder is:
  - A. 0
  - B. 1
  - C. 49
  - D. 50
- 24) The simplified form of  $\frac{1}{\sqrt{9}-\sqrt{8}}$  is:
  - A.  $\frac{1}{3+2\sqrt{2}}$
  - B.  $\frac{3}{2} \sqrt{2}$
  - C.  $3-2\sqrt{2}$
  - D.  $3+2\sqrt{2}$
- 25) If  $\frac{a}{b} + \frac{b}{a} = -1$  where a, b  $\neq 0$ , then the value of  $a^3 b^3$  is :
  - A. -3
  - B. -2
  - C. -1
  - $\mathsf{D.}\ 0$

| 26) If $x-2$ is a factor of $x^2+3ax-2a$ , then the value of a is:                                                                                                                                              |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A2                                                                                                                                                                                                              |  |  |  |  |
| B1                                                                                                                                                                                                              |  |  |  |  |
| C. 1                                                                                                                                                                                                            |  |  |  |  |
| D. 2                                                                                                                                                                                                            |  |  |  |  |
| 27) If $(x+1)$ is a factor of $ax^4+bx^3+cx^2+dx+e$ then :                                                                                                                                                      |  |  |  |  |
| A. $a + c + e = b + d$                                                                                                                                                                                          |  |  |  |  |
| B. a + b + e = c + d                                                                                                                                                                                            |  |  |  |  |
| C. $a+b+c=d+e$                                                                                                                                                                                                  |  |  |  |  |
| D. b + c + d = a + e                                                                                                                                                                                            |  |  |  |  |
| 28) If $x = 2$ and $y = -1$ is a solution of the equation $2x + 3y = k$ then the value of k is:                                                                                                                 |  |  |  |  |
| A. 1                                                                                                                                                                                                            |  |  |  |  |
| B. 5                                                                                                                                                                                                            |  |  |  |  |
| C. 6                                                                                                                                                                                                            |  |  |  |  |
| D. 7                                                                                                                                                                                                            |  |  |  |  |
| 29) The present age of A is 3 years more than thrice the present age of B. If the present ages of A and B are 'x ' and 'y' years respectively ,then the algebraic equation representing the given situation is: |  |  |  |  |
| A. $x + 3 = 3y$                                                                                                                                                                                                 |  |  |  |  |

B. x-3 = 3y

C. x + 3y + 3 = 0

D. x-3+3y=0

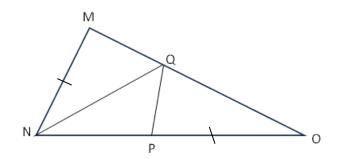











31. In the given figure,  $\angle$ MNO = 2 $\angle$ NOM, NQ is the bisector of  $\angle$ MNO and MN=PO. Therefore,  $\Delta$ MNQ is congruent to:



C. 
$$\Delta$$
OQP

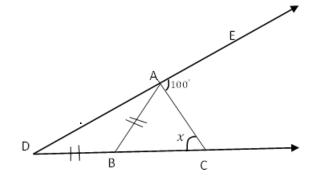
D. 
$$\Delta NQP$$



32. The value of  $sin^2 70^{\circ} + sin^2 20^{\circ} - 2cos^2 90^{\circ}$  is:

C. 0

D. 1

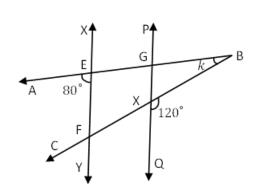

33. If Sin 2A = Cos  $(A-45^{\circ})$  Where 2A is an acute angle, then the value of A:

- A. 0°
- B. 30°
- C. 45°
- D. 60°

- 34. ABC is a right triangle, right angled at B. If AB = 10cm and  $\angle$  C =  $30^{\circ}$ , then the length side BC is:
  - A. 5 cm
  - B.  $10\sqrt{3}$ cm
  - C. 20 cm
  - D.  $20\sqrt{3}$ cm
- 35. If one angle of a triangle is equal to the sum of the other two angles then, the triangle is
  - A. an acute triangle
  - B. an obtuse triangle
  - C. a right angled triangle
  - D. an equilateral triangle
- 36. In the given figure, AB divides  $\angle$ DAC such that the measure of  $\angle$  CAB is thrice the measure of  $\angle$  DAB. If AB = DB and  $\angle$  EAC =  $100^{\circ}$ , then the value of x is:



- C. 80°
- D. 100°



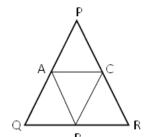

37. In the given figure , XY  $\parallel$  PQ If  $\angle$  AEF =  $80^{\circ}$  and  $\angle$  BXQ =  $120^{\circ}$  , then the value of k is:





D. 100°




- 38. If the angles of a quadrilateral taken in order are in the ratio 3:7:6:4, then the quadrilateral is a:
  - A. rhombus
  - B. parallelogram
  - C. trapezium
  - D. kite
- 39. In the given figure, points A, B and C are the mid-points of sides PQ, QR and PR of  $\Delta$ PQR respectively. If the perimeter of  $\Delta$ PQR is 4 cm, then the perimeter of  $\Delta$ ABC is:











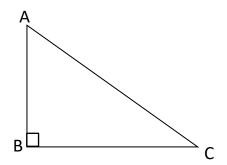
- 40. REST is a rhombus . If  $\angle RTE = (3x 2)^\circ$  and  $\angle TES = (50 x)^\circ$ , then the measure of  $\angle R$  is
  - A. 13°
  - B. 37°
  - C. 74°
  - D. 106°

## Section B ( 2 marks each)

- 41. Represent  $\sqrt{2}$  on number line.
- 42. Factorise the following quadratic polynomial by splitting the middle term.

$$4x^2 - 11x + 6$$

OR

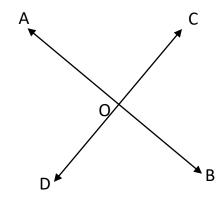

$$5x^2 + 12x - 9$$

- 43. Factorise using a suitable identity:  $27a^3 64b^3$ .
- 44. Expand using a suitable identity:  $(3x + 5y + 8z)^2$

OR

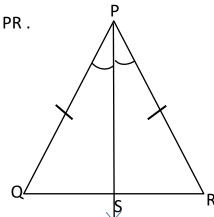
Evaluate using a suitable identity: (103)<sup>3</sup>

45. In  $\triangle ABC$ ,  $\angle B = 90^{\circ}$ , AB = 5 cm and BC = 12 cm Find the length of AC and the value of Cos C.




OR

Evaluate the following trigonometric expression using known trigonometric values of specific angles:


$$5 \text{ Tan}^2 30^0 + 3 \sin^2 45^0$$

46. Given: In the adjoining figure,
lines AB and CD intersect at 'O'
Prove that:∠AOC = ∠BOD



47. Given:  $\triangle PQR$  is an Isosceles triangle such that PQ = PR. Ray PS is the bisector of  $\angle QPR$ 

Prove that :  $\angle Q = \angle R$ 

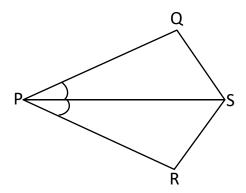


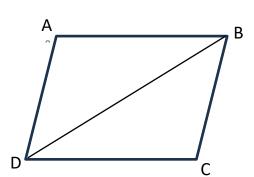
# Section C (3 marks each)

48. Draw the graph of the following linear equation in two variables.

| 2x + y = 9 |   |  |  |  |  |  |  |
|------------|---|--|--|--|--|--|--|
|            | Х |  |  |  |  |  |  |
|            | Υ |  |  |  |  |  |  |

( plot at least three points)


49. In the given figure, PQSR is a quadrilateral

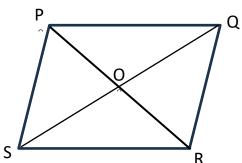

In which  $\angle Q = \angle R$  and PS bisects  $\angle QPR$ 

Prove that :  $\triangle PQS \cong \triangle PRS$ .

50. Given: □ABCD is a parallelogram.BD is the diagonal

Prove that: AB=CD and AD=BC





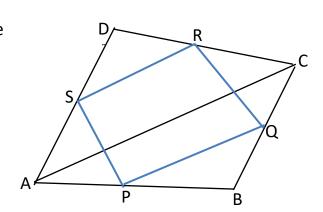

OR

Given that: In  $\hfill\square PQRS$  , diagonals PR and QS intersect at O.

PO=OR and QO=SO

Prove that: □PQRS is a parallelogram.



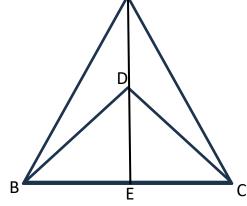

51. Given: ABCD is a quadrilateral in which

P, Q, R and S are the mid-points of the sides AB, BC, CD and DA.

AC is the diagonal.

If SR= 5.2cm and QR=6.4cm,then

Find the length of AC, PQ and PS




- 52. Construct  $\triangle$  ABC such that BC = 7.5 cm , B =  $\angle$ 75 $^{\circ}$  and AB + AC = 13 cm. **OR**Construct  $\triangle$  PQR such that QR = 6.5 cm ,  $\angle$  Q = 60 $^{\circ}$  and PR -- PQ = 3.5 cm.
- 53. Factorise the polynomial:  $a^3 + 13a^2 + 32a + 20$

### Section D (4 marks each)

54. Given: Δ ABC and Δ DBC are two isosceles triangles on the same base BC and the vertices A and D are on the same side of BC. A AD is extended to intersect BC at E.

Prove that :  $\triangle$  ABE  $\cong$   $\triangle$  ACE.



55. Construct  $\triangle$  PQR such that ,  $\angle$  Q = 45 $^{\circ}$  ,  $\angle$  R = 60 $^{\circ}$  and PQ + QR + PR = 11 cm. Measure and state the length of PQ, QR and PS.

-----X------X