Seat No.

Time: 1½ Hours

FIRST-TERM

MATHEMATICS

Subject Code

H 4 7 5 4

Total No. of Questions: 40 (Printed Pages: 16)

Maximum Marks: 40

INSTRUCTIONS: (i) The question paper consists of 40 questions.

- (ii) All questions are compulsory.
- (iii) All questions are of Multiple Choice Type and carry one mark each.
- (iv) For each question select only one correct option from the alternatives given.
- (v) Use of calculator is not allowed.
- 1. The matrix $A = [a_{ij}]$ of order 2×2 whose elements are given by $a_{ij} = 2i j$ is
 - (A) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (B) $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$
 - (C) $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$
 - (D) $\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$

- 2. Matrices A and B will be inverses of each other if and only if
 - (A) AB = BA
 - (B) AB = BA = O
 - (C) AB = O and BA = I
 - (D) AB = BA = I
- - (A) an identity matrix
 - (B) a row matrix
 - (C) a scalar matrix
 - (D) a zero matrix
- 4. For a skew symmetric matrix, all the diagonal elements are
 - (A) non-zero
 - (B) negative numbers
 - (C) positive numbers
 - (D) zero
- 5. If A is a square matrix such that $A^2 = I$, then $A^3 + (A + I)^2 9A I^2 = \dots$.
 - (A) 6A + I
 - (B) 6A
 - (C) 6A + I
 - (D) -6A I

6.	A, B, C are 3 matrices such that the order of A is 4×3 and the order
	of B is 4 \times 5 and the order of C is 7 \times 3. Then the order of $(A^{\scriptscriptstyle T}\ B)^{\scriptscriptstyle T}\ C^{\scriptscriptstyle T}$
	is
	$(A) 5 \times 3$
	$(B) 4 \times 5$
	(C) 5 × 7
	(D) 4 × 3
7.	The value of $\begin{vmatrix} 1 & 1 & 1 \\ 11 & 10 & 9 \\ 101 & 100 & 99 \end{vmatrix}$ is
	(A) 1
	(B) -1
	(C) 2

(A) 4

(D)

0

- (B) –2
- (C) -4
- (D) 2

$$(A) \qquad \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix}$$

(B)
$$\begin{vmatrix} 6 & -5 \\ 5 & 1 \end{vmatrix}$$

$$(C) \qquad \begin{vmatrix} -6 & 5 \\ -5 & 1 \end{vmatrix}$$

$$(D) \qquad \begin{vmatrix} 3 & 4 \\ 1 & -5 \end{vmatrix}$$

10. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, such that $ad - bc \neq 0$, then $A^{-1} = \dots$.

(A)
$$\frac{1}{ad-bc}\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

(B)
$$\frac{1}{ad-bc}\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$$

(C)
$$\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(D)
$$\frac{1}{ad-bc}\begin{bmatrix} d & b \\ c & a \end{bmatrix}$$

11.	If R	is a relation in the set $\{a,b,c,d\}$ given by
	$\mathbf{R} = \left\{$	(a,a),(b,b),(c,c),(d,d),(a,d),(a,b),(d,b), then
	(A)	R is reflexive and symmetric but not transitive
	(B)	R is reflexive and transitive but not symmetric
	(C)	R is symmetric and transitive but not reflexive
	(D)	R is an equivalence relation
12.	The f	function $f: \mathbf{N} \to \mathbf{N}$ defined by $f(x) = x^3 + 12$ is
	(A)	bijective
	(B)	injective but not surjective
	(C)	surjective but not injective
	(D)	neither injective nor surjective
13.	* is a	a binary operation on ${\bf R}$ defined by $a*b=a$, $a,b\in{\bf R}$, then
	(A)	* is commutative but not associative
	(B)	* is both commutative and associative
	(C)	* is neither commutative nor associative
	(D)	* is associative but not commutative
14.	$f: \mathbf{R}$	$ ightarrow \mathbf{R}$ is defined by $f(x) = \cos x$ and $g: \mathbf{R} \to \mathbf{R}$ is defined by $g(x) = x^2$.
	Then	$(gof)(x) = \dots$

(A)
$$\cos(x^2)$$

- (B) $\cos^2 x$
- (C) $x^2 \cos x$
- (D) $x \cos x$

- 15. Let $\mathbf{R} \left\{ -\frac{4}{3} \right\} \to \mathbf{R}$ be a function defined by $f(x) = \frac{4x}{3x+4}$, $x \neq \frac{-4}{3}$. The inverse of f is the map g: Range of $f \to \mathbf{R} \left\{ -\frac{4}{3} \right\}$ given by:
 - $(A) \qquad g(y) = \frac{3y}{3 4y}$
 - (B) $g(y) = \frac{4y}{3-4y}$
 - (C) $g(y) = \frac{3y}{4 3y}$
 - (D) $g(y) = \frac{4y}{4 3y}$
- 16. If f is a real function such that $f(x) = \frac{\sin^{-1} 3x}{4x}$, $x \neq 0$ is continuous at x = 0, then $f(0) = \dots$.
 - (A) $\frac{4}{3}$
 - (B) $\frac{3}{4}$
 - (C) $\frac{-3}{4}$
 - (D) $\frac{-4}{3}$
- 17. The value of 'm' for which the real function f where

$$f(x) = \begin{cases} 5x - 4 & , 0 < x \le 1 \\ 4x^2 + 3mx & , 1 < x < 2 \end{cases}$$

is continuous at every point in its domain is

- (A) 7
- (B) 0
- (C) 1
- (D) -1

18. To make the real function f continuous at x = 2, where

$$f(x) = \begin{cases} 2x & \text{if} & x < 2\\ k & \text{if} & x = 2\\ x^2 & \text{if} & x > 2 \end{cases}$$

the value of k should be

- (A) 2
- (B) -2
- (C) 4
- (D) -4

19. $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \frac{a^{x} - a^{-x}}{x}, \qquad x \neq 0$$

$$= 3k, \qquad x = 0$$

is continuous at x = 0. Then $k = \dots$

- (A) $\frac{2}{3} \log a$
- (B) $\frac{-2}{3} \log a$
- (C) $\frac{3}{2} \log a$
- (D) $\frac{-3}{2} \log a$

20. If $y = x^2 \log x$, then $\frac{d^2y}{dx^2} = \dots$

- (A) $2 \log x$
- (B) $3 + 2 \log x$
- (C) $2 + 2 \log x$
- (D) $3 + \log x$

21. If $x + e^x = y + e^y$, then $\frac{dy}{dx} = \dots$

- (A) $\frac{1+e^x}{1+e^y}$
- (B) $\frac{1+e^y}{1+e^x}$
- $(C) \qquad 1 + e^x e^y$
- (D) $\frac{1-e^x}{1-e^y}$

- (A) *e*
- (B) e
- (C) 4
- (D) -4

- 23. If x = a $(1 \cos t)$, y = a $(t + \sin t)$ where 't' is the parameter and 'a' is a constant, then $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{2}} = \dots$
 - (A) -1
 - (B) 1
 - (C) $\frac{\pi}{2}$
 - (D) $-\frac{\pi}{2}$
- 24. If $y = (\sin x)^{\cos x}$, then $\frac{dy}{dx} = \dots$
 - (A) $(\sin x)^{\cos x} [\sin x \cot x \sin x \log (\sin x)]$
 - (B) $(\cos x)^{\sin x} [\cos x \cot x \sin x \log (\sin x)]$
 - (C) $(\sin x)^{\cos x} [\cos x \cot x \sin x \log (\sin x)]$
 - (D) $(\sin x)^{\cos x} [\cos x \cot x \cos x \log (\sin x)]$
- - (A) $6x^2 \sec^2(x^3) \tan(x^3)$
 - (B) $6x^2 \sec(x) \tan(x)$
 - (C) $2x \sec(x^3) \tan(x^3)$
 - (D) $6x^2 \sec(x^3) \tan(x^3)$
- 26. If $x \in [-1, 1]$, then $\sin^{-1}(-x) = \dots$.
 - (A) $\sin^{-1} x$
 - (B) $-\sin^{-1} x$
 - (C) $\pi \sin^{-1} x$
 - (D) $\csc^{-1} x$

27. $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \dots$

- (A) $tan^{-1}(1)$
- (B) $\tan^{-1}\left(\frac{1}{2}\right)$
- (C) $\tan^{-1}\left(\frac{3}{4}\right)$
- (D) $\tan^{-1}\left(\frac{2}{3}\right)$

28. If $y = \cos^{-1} x$, then

- (A) $x \in [-1, 1]; y \in [0, \pi]$
- (B) $x \in \mathbf{R}; y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
- (C) $x \in [-1, 1]; y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
- (D) $x \in \mathbf{R} [-1, 1]; y \in [0, \pi] \left\{\frac{\pi}{2}\right\}$

29. The value of $\sec^2 \left[\tan^{-1} \left(\frac{5}{11} \right) \right]$ is

- (A) $\frac{25}{121}$
- $(B) \qquad \frac{96}{121}$
- $(C) \qquad \frac{146}{121}$
- $(D) \qquad \frac{121}{146}$

- - (A) $\frac{2}{3}$
 - (B) $\frac{3}{2}$
 - (C) 2
 - (D) 3
- 31. If \vec{a} and \vec{b} are two unit vectors and θ is the angle between them, then $\vec{a} + \vec{b}$ is a unit vector if $\theta = \dots$
 - (A) $\frac{\pi}{4}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{\pi}{2}$
 - (D) $\frac{2\pi}{3}$
- 32. If \hat{i} , \hat{j} and \hat{k} are the three unit vectors, then the vector represented by $(\hat{i} \times \hat{j}) \times \hat{i} + (\hat{j} \times \hat{k}) \times \hat{j} + (\hat{k} \times \hat{i}) \times \hat{k} = \dots$
 - (A) $\hat{i} + \hat{j} + \hat{k}$
 - (B) $\stackrel{\wedge}{i} \stackrel{\wedge}{j} + \stackrel{\wedge}{k}$
 - (C) $\hat{i} + \hat{j} \hat{k}$
 - (D) $\stackrel{\wedge}{i} \stackrel{\wedge}{j} \stackrel{\wedge}{k}$

- 33. The value of λ so that the vectors $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 3\hat{k}$, $\vec{c} = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$ are complanar is
 - (A) -1
 - (B) -2
 - (C) -3
 - (D) -4
- 34. Let \vec{r} be the position vector of an arbitrary point p(x,y,z). The Cartesian form of the equation of the line passing through two points (x_1,y_1,z_1) and (x_2,y_2,z_2) is
 - (A) $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$
 - (B) $\frac{x-x_1}{x_2+x_1} = \frac{y-y_1}{y_2+y_1} = \frac{z-z_1}{z_2+z_1}$
 - (C) $\frac{x+x_1}{x_2+x_1} = \frac{y+y_1}{y_2+y_1} = \frac{z+z_1}{z_2+z_1}$
 - (D) $\frac{x+x_1}{x_2-x_1} = \frac{y+y_1}{y_2-y_1} = \frac{z+z_1}{z_2-z_1}$
- - (A) aA + bB + cC = 0
 - (B) aA + bB + cC = 1
 - (C) aA = bB = cC
 - (D) $\frac{a}{A} = \frac{b}{B} = \frac{c}{C}$

- 36. The distance of the plane 2x + 3y 6z + 2 = 0 from the origin is
 - (A) 2
 - (B) 14
 - (C) $\frac{2}{7}$
 - (D) $\frac{2}{\sqrt{23}}$
- - (A) 13x + 21y 52z = 0
 - (B) 13x 21y 52z = 0
 - (C) 13x + 21y + 52z = 0
 - (D) $13x + 21y 52z = \frac{1}{11}$
- 38. The direction cosines of the normal to the plane 2x + 3y z = 5 are :
 - (A) 2, 3, -1
 - (B) $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$
 - (C) 2, 3, 1
 - (D) $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$

- 39. The angle between the line $\vec{r} = (\hat{i} + 2\hat{j} \hat{k}) + \lambda (\hat{i} \hat{j} + \hat{k})$ and the plane $\vec{r} \cdot (2\hat{i} \hat{j} + \hat{k}) = 6$ is
 - (A) $\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$
 - $(B) \quad sin^{-1} \bigg(\frac{\sqrt{2}}{3} \bigg)$
 - (C) $\cos^{-1}\left(\frac{2}{3}\right)$
 - (D) $\sin^{-1}\left(\frac{1}{3}\right)$
- 40. The equation of the plane through the point (-1, -1, 1) which is parallel to the plane $\overline{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0$ is
 - (A) $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) + 1 = 0$
 - (B) $\stackrel{\rightarrow}{r} \cdot \left(\stackrel{\wedge}{i} + \stackrel{\wedge}{j} + \stackrel{\wedge}{k} \right) 1 = 0$
 - (C) $\stackrel{\rightarrow}{r} \cdot \left(\stackrel{\wedge}{i} + \stackrel{\wedge}{j} + \stackrel{\wedge}{k} \right) + 3 = 0$
 - (D) $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) 3 = 0$

Space For Rough Work

Space For Rough Work